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1. Introduction 

1.1 Description 

Detecting brain tumors early and accurately is crucial for giving patients the best chance of 

recovery. Delays or mistakes in diagnosing can cause serious problems, making treatments less 

effective and affecting quality of life. However, the imbalance between the number of radiologists 

and the total workload emphasize need for tools like MRacle. 

MRacle is an innovative AI-based solution designed to address these challenges and change how 

brain tumors are detected and diagnosed. While taking ethical and professional issues into 

consideration, by analyzing images quickly and accurately, MRacle helps identify potential tumors 

and marks affected areas for easier review using advanced neural networks. Furthermore, MRacle 

helps radiologists concentrate on the most critical patients by giving priority to those that are more 

likely to have tumors. The purpose behind MRacle is to improve diagnostic accuracy, enhance 

patient outcomes and  help radiologists without replacing their role. 
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1.2 High-Level System Architecture & Components of Proposed 

Solution 

 

 
Figure 1: High-Level System Architecture Diagram 
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Components: 

1. Security Module: 

● Implements data encryption and access control mechanisms to ensure patient 

confidentiality. 

● Monitors system activity to detect and prevent unauthorized access. 

2. PACS Dataset Module: 

● Interfaces with Picture Archiving and Communication Systems (PACS) to acquire and 

store MRI images. 

● Integrates seamlessly with hospital radiology systems. 

3. Data Acquisition Module: 

● Manages acquisition of MRI scans in formats such as NIfTI (.nii/.nii.gz) and DICOM 

(.dcm). 

● Supports incorporation of multiple MRI sequences (e.g., T1-CE, T2-FLAIR). 

● Validates incoming data to ensure quality and format compatibility. 

4. Preprocessing Module: 

● Aligns MRI sequences, resamples images to a uniform voxel size, and performs skull-

stripping.  

● Ensures consistent data representation via normalization. 

5. AI Analysis Model: 

● Utilizes MRacle AI model for tumor detection and segmentation. 

6. AI Results Dataset Module: 

● Stores results generated by the AI analysis model, including tumor detection and 

segmentation outputs. 

7. Case Prioritization System: 

● Algorithms to prioritize cases based on tumor likelihood. 

● Integration with radiologists' workflow for efficient case management. 

8. User Interface (UI): 

● An interface where the user can view all results from the model, such as segmentation 

results and tumor likelihood. 

● A system where authorized users can upload MRI images externally to the system and 

request analysis. 
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1.3 Constraints 

1.3.1 Implementation Constraints 

Data Diversity and Quality: 

● The open-access datasets may not fully represent the diversity of real-life cases. 

● Potential biases due to overrepresentation of certain tumor types or demographics. 

● Danger of bias due to lack of diversity in age and ethnicity background.  

● Difficulty in obtaining sufficient data for rare tumor types. 

MRI Sequence Variability: 

● Different MRI machines produce varying image qualities and sequences. 

● Older MRI machines may produce images with low quality. 

● Need to handle variations in image contrast, noise levels, and artifacts. 

Computational Resources: 

● Training and deploying deep learning models require significant computational power. 

● Real-time analysis demands optimized algorithms and hardware acceleration. 

Integration Challenges: 

● Compatibility with various MRI devices without hardware changes. 

● Integration into current PACS systems easily. 

● Ensuring adaptation with DICOM (Digital Imaging and Communications in Medicine) [1] 

and other interoperability standards. 

1.3.2 Economic Constraints 

Development Costs: 

● High costs associated with acquiring and annotating medical imaging data. 

● Rental fees for the infrastructure to be used to train the model, such as high-performance 

GPUs 

Certification Expenses: 

● Significant financial investment required for FDA [2] and CE [3] approvals. 

● Ongoing costs for maintaining compliance and updating certifications. 

Maintenance Costs: 

● Regular software updates to improve AI model performance, integrate new features, and 

address new challenges. 

● Costs associated with retraining AI models to adapt to changes in medical imaging 

technology or new diagnostic requirements. 

● Data security must be maintained, following laws like GDPR[4] and HIPAA[5]. 
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1.3.3 Ethical Constraints 

Patient Privacy: 

● Strict adherence to data protection laws such as HIPAA [5] and GDPR [4]. 

● Risks associated with data breaches or unauthorized access. 

Algorithmic Bias: 

● Potential for the AI model to exhibit biases based on the training data. 

● Ethical implications of unequal diagnostic accuracy across different patient groups. 

Transparency and Trust: 

● Necessity to ensure that radiologists understand and trust AI recommendations. 

● Ambiguity in generation of results due to black box aspect of AI technology. 

● Risk of over-reliance on AI or dismissal of AI alerts due to lack of trust. 

Informed Consent: 

● Ethical considerations in using patient data for model training. 

1.4 Professional and Ethical Issues 

When using AI systems like MRacle in healthcare, there are important issues to consider regarding 

responsibility, data use, professional acceptance, and ethics. It's important to define who is 

responsible if a misdiagnosis happens or if a tumor is missed, especially when doctors rely on AI 

suggestions. Legal concerns must also be addressed, as it may be unclear who is at fault, especially 

with AI models that are hard to understand (black box structure). Clear guidelines should be set 

for doctors and AI systems to work together, so the AI supports but does not replace the doctor’s 

judgment. 

It’s also necessary to clarify who owns the data generated by AI and ensure that patient information 

is used ethically, especially when training AI systems. Policies should be clear about how data is 

handled, stored, and shared. Another challenge is getting healthcare professionals to accept AI. 

Some may fear that AI will replace their jobs, so it’s important to explain that AI is a tool to help 

doctors, not take their place. Doctors and other staff need training to use AI properly, and there 

should be clear guidelines on how AI fits into their work. 

MRacle AI is designed to help doctors make decisions, not make them on its own, especially in 

complex cases where the doctor’s experience is needed. Lastly, AI systems need to be checked 

regularly to make sure they are working well and that they stay accurate over time. This includes 

updating models to prevent errors and keep up with medical changes. 
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1.5 Standards 

Medical Imaging Standards: 

● DICOM: Standard for handling, storing, and transmitting medical imaging information [1]. 

● NIfTI: Standard format for neuroimaging data [6]. 

Software Development Standards: 

● IEEE 830-1998: Software Requirements Specifications [7]. 

Regulatory Standards: 

● FDA Regulations: For Software as a Medical Device (SaMD) [2]. 

● CE Marking: Compliance with EU medical device directives [3]. 

Data Security Standards: 

● HIPAA: Health Insurance Portability and Accountability Act [5]. 

● GDPR: General Data Protection Regulation [4]. 

Modeling Standards: 

● UML 2.5.1: For system modeling and documentation [8]. 

2. Design Requirements 

2.1 Functional Requirements 

The radiologists should be able to: 

● Upload and manage MRI scans in various formats depending on the MRI type. 

● View multi-sequence images with synchronized navigation. 

● Initiate AI analysis on selected scans, view AI-generated tumor segmentation overlays. 

● Inspect the potential risks shown by the labels generated by the AI analysis. 

● Order the results according to the risks, a dashboard displaying prioritized cases and 

customize alerts for high-risk findings. 

● Compare current scans with previous ones and track changes in tumor size and 

characteristics over time. 

● Annotate AI results with corrections or confirmations, and submit feedback to improve AI 

performance if necessary. 

● Generate detailed reports for patient records and scans.  

● Add notes on their suggestions to the final diagnosis and further steps.  
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2.2 Non-Functional Requirements 

2.2.1 Usability 

The system will have an intuitive interface designed to align seamlessly with radiologists' 

workflows, ensuring a consistent and user-friendly experience. Common tasks will be 

implemented to minimize user effort, allowing users to focus on their core responsibilities. 

Customization options enable users to adjust interface settings according to their preferences. To 

further enhance usability, comprehensive user manuals and documentation will be supplied. 

2.2.2 Privacy & Security 

The system is designed with a focus on the sensitivity of medical data, ensuring compliance with 

healthcare-specific data protection standards and regulations. Given the critical nature of patient 

information, strong measures will be in place to protect privacy and confidentiality. Data must be 

protected during transmission and storage, minimizing risks of interception or unauthorized access. 

Role-based access controls (RBAC) are going to be implemented to ensure only authorized 

healthcare professionals can access specific patient data, and multi-factor authentication (MFA) 

will be required for secure logins. Additionally, measures such as anonymization must be applied 

where possible to protect patient identities, further increasing the system's commitment to privacy 

and security in the medical domain. 

2.2.3 Performance 

The system should have a high enough performance, completing AI analysis within a short interval 

of time per scan and maintaining UI response times of under one second for user interactions. It is 

designed to handle scalability, support multiple concurrent analysis requests. 

2.2.4 Supportability 

A modular architecture should ensure clear separation of components, simplifying updates and 

maintenance. Update mechanisms will be designed to be seamless, enabling software updates 

without service disruption, with a notification system in place for scheduled maintenance. The 

system will provide a full suite of manuals, including FAQs, troubleshooting guides, and system 

architecture documentation, accessible for radiologists. 

2.2.5 Scalability 

The application should easily scale up in order to meet the needs of the growing needs of users. 

The server should scale up to handle an increasing number of scans. We aim to develop our 

application so that our model is usable across multiple hospitals in Türkiye. 
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3. Feasibility Discussions 

3.1 Market & Competitive Analysis 

3.1.1 Global Market Analysis 

Globally, the AI-enabled diagnostic imaging sector is growing with huge investments. Brain tumor 

detection, in particular, has emerged as a rapidly growing segment due to the integration of AI and 

machine learning that increases diagnostic accuracy and efficiency. Conferences and challenges 

such as Brain Tumor Segmentation (BraTS) are held in this field annually [9]. Rapidly developing 

technologies and investments in this field are growing worldwide with innovations such as 

automatic tumor detection, segmentation, and prioritization. Leading companies like Philips and 

Siemens are integrating AI and diagnostic technologies into MRI devices [10][11]. Major players 

in the global market include independent companies such as AIRAmed, Annalise.ai, and AI 

Medical, which offer AI-driven platforms focused on lesion detection, case prioritization, and 

protection of personalized health data [12]. The integration of AI not only improves diagnostic 

capabilities but also acts as a triage mechanism for radiologists to prioritize high-risk cases. These 

innovations are creating a rapidly growing global market for AI-enabled diagnostic tools, 

especially in brain tumor detection, where early detection plays a significant role in patient 

outcomes.  

The licensing and certification processes are the biggest obstacle to entering this emerging market 

worldwide. In the European Union, CE (Conformité Européenne) certification and in the US, FDA 

(Food and Drug Administration) approval are required for medical devices and healthcare 

equipment to be placed on the market [2][3]. However, due to high costs and long approval periods, 

these processes can be a significant obstacle for entrepreneurs and new companies. For MRacle, 

these certification processes are also the biggest obstacle to entering the market. 

3.1.2 Local Market and Competitive Analysis 

In Türkiye's local market, the current healthcare system presents a need for MRacle to be met. 

While 52 MRI scans are performed per 1000 people per year in OECD countries, this number is 

119 per 1000 people in Türkiye. However, the number of radiologists in Türkiye is significantly 

low, with 15 per 100,000 people in OECD countries, this number is only 5 per 100,000 people in 

Türkiye [13]. In other words, while our country performs more than twice as many MRIs as OECD 

countries, the number of radiologists is one-third of OECD countries. In Türkiye, a radiologist may 

have to report up to 300 daily examinations, spending only 1-2 minutes on each [13]. This situation 

forces the radiologist to make mistakes or results in reports that are later than expected. This 

imbalance highlights the urgent need for AI-supported tools to prevent radiologists with excessive 

workloads from reporting images so late that they pose a life-threatening risk. In addition, the 

radiologist needs to be able to make early and accurate diagnoses in life-threatening cases such as 
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brain tumors. Approximately 15,000 people are diagnosed with brain tumors in Türkiye each year 

[15]. In brain tumors, where early diagnosis is vital, the need for prioritization in cases also comes 

to the fore. Our goal in the market is not to build a system that will replace radiologists and doctors, 

but to assist them in making their diagnosis easier and faster.  

Contrary to global trends and local needs, the diagnostic imaging market in Türkiye has yet to 

embrace AI-enabled diagnostic tools. In 2020, a product called Türk-Beyin was introduced in a 

project carried out in collaboration with Gazi University and the “Cumhurbaşkanlığı Dijital 

Dönüşüm Ofisi”. This product integrates with Gazi University Hospital's PACS system, analyzes 

every brain MRI taken, and notifies the doctor in case of an abnormality [16]. However, despite 

the promising nature of the project, it is not currently used, probably due to licensing or 

certification issues. We aim to contact the coordinators of the Türk-Beyin project on this issue and 

develop our local market analysis. Apart from this project, there are no other prominent local 

projects. This deficiency creates a significant market opportunity for the MRacle. 

3.1.3 Go to Market Strategy 

We have built the market entry strategy for MRacle in two main phases. First is the clinical 

validation step, which provides the evidence needed to demonstrate the efficacy and safety of the 

product. We hope to provide validation of MRacle by establishing partnerships with volunteer and 

open-concept healthcare facilities. By partnering with healthcare facilities, MRacle can collect 

real-world data that will support its clinical validation and help form the basis for regulatory 

approvals. Research shows that doctors tend to trust AI decisions in clinical decisions [17]. 

Collaboration with doctors in the clinical validation step is one of the most important steps for the 

MRacle to enter the market. We can also integrate our product into MRI devices that healthcare 

institutions already have in their inventory and bring it to market at a cost much lower than the 

budget required for new devices. Unlike solutions from companies like Siemens and Philips that 

require expensive investments in new MRI devices, MRacle can already work with the existing 

MRI infrastructure in Türkiye. This integration significantly reduces the cost for healthcare 

institutions, making the product more affordable and accessible compared to these solutions. This 

integration with existing systems, strategic partnerships, and clinical validation will establish 

MRacle in the local market. Clinical validation forms the basis for regulatory requirements prior 

to certification processes. 

Obtaining FDA and CE certifications is the second phase of entering the market, as these approvals 

are mandatory for any medical device entering the market. MRacle is categorized as Software as 

a Medical Device (SaMD); it must meet strict requirements to prove its safety, reliability, and 

transparency [2][3]. These certifications are critical for market entry, gaining the trust of healthcare 

providers, and for MRacle to be used safely and effectively in clinical settings. 
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3.2 Academic Analysis 

The technical feasibility of the MRacle project has been assessed from multiple perspectives, 

including the availability of suitable datasets, data augmentation techniques, and the selection of 

machine learning models. 

3.2.1 Dataset Availability and Diversity 

A diverse dataset is important for training a brain tumor detection model. We have identified 

several publicly available datasets relevant to our project: 

● Brain Tumor Segmentation (BraTS) Challenge Datasets: The 2024 BraTS Post-

Treatment Glioma Challenge dataset offers a comprehensive collection of multi-

institutional MRI scans with expert annotations of gliomas of different grades. This dataset 

includes four MRI modalities for each patient: T1-weighted, T1-weighted contrast-

enhanced (T1CE), T2-weighted, and T2 Fluid Attenuated Inversion Recovery (T2-

FLAIR). With over 2,000 patients' this dataset provides a solid foundation for training and 

validating our models [18]. 

● ReMIND The Brain Resection Multimodal Imaging Database: The ReMIND contains 

pre- and intra-operative data from 114 patients surgically treated with image-guided tumor 

resection between 2018 and 2022. For each patient, the dataset includes pre- and intra-

operative MRI scans (T1, T1CE, T2, and T2-FLAIR). Additionally, it provides various 

segmentations such as the preoperative whole tumor, cerebrum, previous resection cavities, 

and residual tumors identified on intraoperative MRI. Including intraoperative data and 

detailed segmentations enhances the diversity of our training data and allows for more 

comprehensive modeling of brain tumors, including the challenges of residual tumor 

detection [19]. 

● Pretreat-MetsToBrain-Masks: This dataset is an open-access collection of brain 

metastasis 3D segmentations on MRI, along with clinical and imaging feature information. 

It includes patients with pathologically proven brain metastases with pre-treatment scans 

with standard MRI sequences (T1, T1CE, T2, and T2-FLAIR). The dataset also provides 

clinical metadata such as demographic information, survival outcomes, and qualitative 

imaging features. This dataset enhances our ability to train models to detect and segment 

metastatic brain tumors and understand their clinical implications [20]. 
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3.2.2 Data Augmentation Techniques 

We plan to employ data augmentation techniques to enhance data diversity and prevent overfitting. 

This approach is critical in medical image analysis, where obtaining new high-quality annotated 

data is costly and time-consuming. We plan to implement the following data augmentation 

strategies: 

3.2.2.1 Affine Transformations 

● Flipping: Creating mirror images of MRI scans along certain axes can help the model learn 

invariant features [21]. 

● Rotation: Applying small rotations helps the model become invariant to the orientation of 

tumors resulting from patient positioning variations. Rotations are kept within a limited 

range to avoid creating anatomically incorrect images [21]. 

● Translation: Slightly shifting the images along the x, y, or z axis allows the model to learn 

spatially invariant features, helping to detect tumors in different parts of the brain [21]. 

3.2.2.2 Elastic Transformations 

Data augmentation using elastic transformations can generate variations of medical images for 

training, typically using B-splines or random deformations. While these can sometimes produce 

unrealistic images (such as distorted brain MRIs), diffeomorphic mapping is a widely used 

technique in data augmentation. It preserves the topology of the original image while generating 

slight variations, helping to create biologically accurate training data that can improve deep 

learning model performance [21]. 

3.2.2.3 Pixel-Level Transformations 

Pixel-level data augmentation modifies image intensity values without changing the geometric 

shape of the images. This is particularly valuable in medical imaging, where images from different 

scanners or locations may have different intensity levels. Standard techniques include adding 

random or Gaussian noise, adjusting brightness, applying gamma correction, and sharpening or 

blurring [21]. 

3.2.2.4 Generation of Artificial Data 

Data augmentation through artificial data generation using Generative Adversarial Networks 

(GANs) has emerged as an approach to enhance medical datasets. GANs work by creating 

synthetic images that are close to real medical data. Other methods include using tumor growth 

models with domain adaptation and "mixup" techniques that combine existing training samples. 

These approaches are especially valuable for medical imaging, where datasets are imbalanced and 

real data is scarce. However, care must be taken to ensure that the synthetic data matches the 

characteristics of real medical images [21]. 
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3.2.3 Model Selection and Methodology 

The selection of appropriate model architectures and the design of a practical methodology are 

critical for the success of our project. Below, we provide a detailed overview of our model selection 

and methodology. 

3.2.3.1 Model Architectures 

We analyzed the following models for their effectiveness in medical image segmentation, in 

particular in brain tumor detection and segmentation tasks: 

● U-Net: The U-Net architecture is a convolutional neural network designed for biomedical 

image segmentation. Introduced by Ronneberger et al. in 2015, U-Net has become a 

foundational model in medical imaging due to its ability to produce high-quality 

segmentation results even with limited training data [22]. 

● 3D U-Net: The 3D U-Net architecture extends the original U-Net model to three 

dimensions, allowing for volumetric segmentation of 3D medical images. It consists of an 

encoder-decoder structure with skip connections that enable the model to capture 

contextual and spatial information effectively. The encoder path captures the context of the 

input image, while the decoder path enables precise localization using transposed 

convolutions [23]. 

● nnU-Net: The nnU-Net (no-new-Net) is a semantic segmentation method that 

automatically adapts to a given dataset. It is an automated framework configuring itself by 

analyzing the provided training cases and automatically setting up a matching U-Net-based 

segmentation pipeline. It automates preprocessing, architecture selection, training, and 

post-processing steps, eliminating the need for manual tuning [24]. 

● Swin UNETR: Swin UNETR integrates the Swin Transformer architecture into a U-Net 

framework, replacing the traditional convolutional encoder with Swin Transformer blocks. 

This allows the model to capture long-range dependencies and hierarchical representations 

efficiently [25]. 

3.2.3.2 Handling Class Imbalance 

Class imbalance is a critical issue in medical image segmentation, where regions of interest (e.g., 

tumors) may fill a small portion of the image compared to the background. This imbalance can 

lead to biased models that favor the majority class (background) and potentially miss diagnostic 

features. To address this issue, several specialized loss functions developed: 

● Dice Loss: Focuses on the overlap between the predicted segmentation and the ground 

truth, effectively handling class imbalance [26]. 

● Focal Loss: Reduces the relative loss for well-classified examples, focusing more on 

complex, misclassified examples [27]. 
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3.2.3.3 Evaluation Metrics 

We will use the following evaluation metrics to evaluate the performance of our models: 

● Dice Similarity Coefficient (DSC): A measure of the overlap between the predicted 

segmentation and the ground truth, ranging from 0 (no overlap) to 1 (perfect overlap). It is 

particularly suitable for medical image segmentation tasks [18]. 

● 95% Hausdorff Distance (HD95): Measures the distance between the boundaries of the 

predicted segmentation and the ground truth, focusing on the worst-case scenarios by 

excluding the top 5% of distances [18]. 

3.2.3.4 Methodology 

Based on these insights, our methodology will involve: 

1. Data Preparation 

● Preprocessing: Standardizing the MRI scans, including co-registering, resampling, and 

skull-stripping. 

● Data Augmentation: Implementing affine transformations, elastic deformations, pixel-

level modifications, and synthetic data generation using GANs. 

2. Model Training 

● Hyperparameter Tuning: Utilizing automated tools like nnU-Net's configuration system 

to optimize model parameters. 

● Loss Functions: Using a combination of loss functions that address class imbalance. 

3. Model Ensemble 

● Diversity of Models: Training multiple models (3D U-Net, nnU-Net, Swin UNETR) to 

capture different aspects of the data. 

● Ensemble Strategy: Combining model predictions through majority voting or weighted 

averaging techniques. 

4. Evaluation 

● Metric Calculation: Computing DSC and HD95 metrics on validation sets. 
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4. Glossary 

 

Term Definition 

AI Artificial Intelligence  

MRI Magnetic Resonance Imaging 

CNN Convolutional Neural Network 

DICOM Digital Imaging and Communications in Medicine 

NIfTI Neuroimaging Informatics Technology Initiative 

FDA Food and Drug Administration 

CE Conformité Européenne Certification 

BraTS Brain Tumor Segmentation Challenge 

OECD Organisation for Economic Co-operation and Development 

SaMD Software as a Medical Device 

PACS Picture Archiving and Communication System 

GDPR General Data Protection Regulation 

HIPAA Health Insurance Portability and Accountability 

RBAC Role-Based Access Controls 

MFA Multi-Factor Authentication 

UML Unified Modeling Language 

GAN Generative Adversarial Network 

T2-FLAIR T2 Fluid Attenuated Inversion Recovery 

T1CE T1 Contrast-Enhanced 

FAQ Frequently Asked Questions 

 

 

 

 

 

 



17 

 

5. References 

[1] “Current edition,” DICOM. [Online]. Available: 

https://www.dicomstandard.org/current. [Accessed: 21-Nov-2024]. 

[2] “Software as a Medical Device (SaMD),” Fda.gov. [Online]. Available: 

https://www.fda.gov/medical-devices/digital-health-center-

excellence/software-medical-device-samd. [Accessed: 21-Nov-2024]. 

[3] “Medical Devices - New regulations,” Public Health. [Online]. Available: 

https://health.ec.europa.eu/medical-devices-new-regulations_en. [Accessed: 

21-Nov-2024]. 

[4] “General data protection Regulation (GDPR) – legal text,” General Data 

Protection Regulation (GDPR). [Online]. Available: https://gdpr-info.eu/. 

[Accessed: 21-Nov-2024]. 

[5] “The HIPAA Privacy Rule,” Hhs.gov. [Online]. Available: 

https://www.hhs.gov/hipaa/for-professionals/privacy/index.html. [Accessed: 

21-Nov-2024]. 

[6] “NIfTI: — neuroimaging informatics technology initiative,” Nih.gov, 21-Jan-

2005. [Online]. Available: https://nifti.nimh.nih.gov/. [Accessed: 21-Nov-2024]. 

[7] “IEEE recommended practice for software requirements specifications,” IEEE, 

Piscataway, NJ, USA, 2008. 

[8] “About the Unified Modeling Language Specification Version 2.5.1,” Omg.org. 

[Online]. Available: https://www.omg.org/spec/UML/2.5.1/About-UML. 

[Accessed: 21-Nov-2024]. 

[9] S. Bionetworks, “Brain Tumor Segmentation (BraTS) Challenges,” 

Synapse.org. [Online]. Available: 

https://www.synapse.org/Synapse:syn53708126/wiki/626320. [Accessed: 21-

Nov-2024]. 

[10] “MRCAT Brain,” Philips. [Online]. Available: 

https://www.philips.com.tr/healthcare/product/HCNMRF320/mrcat-brain-mr-rt-

clinical-application. [Accessed: 21-Nov-2024]. 



18 

 

[11] T. Dewey, “A new artificial intelligence model revealed using MRI technology,” 

Thought Leadership, 12-Nov-2021. . 

[12] “Companies,” Healthairegister.com. [Online]. Available: 

https://healthairegister.com/companies/. [Accessed: 21-Nov-2024]. 

[13] M. Erşan, “Radyolog isyanı: 1 dakikada MR görüntüleri izlenip rapor 

yazılamaz... Hataya itiyorlar,” hurriyet.com.tr, 14-Nov-2018. [Online]. 

Available: https://www.hurriyet.com.tr/gundem/radyolog-isyani-1-dakikada-mr-

goruntuleri-izlenip-rapor-yazilamaz-hataya-itiyorlar-41018425. [Accessed: 21-

Nov-2024]. 

[14] Deutsche Welle, “Çekilen 150 MR veya tomografiden 120’si gereksiz,” 

Deutsche Welle, 27-Oct-2019. [Online]. Available: 

https://www.dw.com/tr/haz%C4%B1rolan-%C3%A7ekilen-150-mr-veya-

tomografiden-120si-gereksiz/a-51009098. [Accessed: 21-Nov-2024]. 

[15] NTV, “Yılda 15 bin kişi beyin tümörüne yakalanıyor,” NTV, 13-Sep-2014. 

[Online]. Available: https://www.ntv.com.tr/saglik/yilda-15-bin-kisi-beyin-

tumorune-yakalaniyor,IOd3RKlpS0yYfS8CY1vp5w. [Accessed: 21-Nov-2024]. 

[16] “Türk Beyin Projesi (TBP),” Türkiye Cumhuriyeti Cumhurbaşkanlığı Dijital 

Dönüşüm Ofisi. [Online]. Available: https://cbddo.gov.tr/projeler/tbp/. 

[Accessed: 21-Nov-2024]. 

[17] S. Gaube et al., “Do as AI say: susceptibility in deployment of clinical 

decision-aids,” NPJ Digit. Med., vol. 4, no. 1, 2021. 

[18] S. Bionetworks, “BraTS 2024,” Synapse.org. [Online]. Available: 

https://www.synapse.org/Synapse:syn53708249/wiki/627500. [Accessed: 21-

Nov-2024]. 

[19] P. Juvekar et al., “The Brain Resection Multimodal Imaging Database 

(ReMIND).” The Cancer Imaging Archive, 2023. 

[20] D. Ramakrishnan et al., “A large open access dataset of brain metastasis 3D 

segmentations on MRI with clinical and imaging feature information.” The 

Cancer Imaging Archive, 2023. 



19 

 

[21] J. Nalepa, M. Marcinkiewicz, and M. Kawulok, “Data augmentation for brain-

tumor segmentation: A review,” Front. Comput. Neurosci., vol. 13, 2019. 

[22] R. Olaf, F. Philipp, and B. Thomas, “U-Net: Convolutional Networks for 

Biomedical Image Segmentation,” arXiv [cs.CV], 2015. 

[23] Ç. Özgün, A. Ahmed, S. L. Soeren, B. Thomas, and R. Olaf, “3D U-net: 

Learning dense volumetric segmentation from sparse annotation,” arXiv 

[cs.CV], 2016. 

[24] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein, 

“nnU-Net: a self-configuring method for deep learning-based biomedical 

image segmentation,” Nat. Methods, vol. 18, no. 2, pp. 203–211, 2021. 

[25] C. Mingjin, H. Yongkang, and L. Yongyi, “Abdominal multi-organ 

segmentation in CT using Swinunter,” arXiv [eess.IV], 2023. 

[26] H. S. Carole, L. Wenqi, V. Tom, O. Sébastien, and M. Jorge Cardoso, 

“Generalised Dice overlap as a deep learning loss function for highly 

unbalanced segmentations,” arXiv [cs.CV], 2017. 

[27] L. Tsung-Yi, G. Priya, G. Ross, H. Kaiming, and D. Piotr, “Focal Loss for 

dense object detection,” arXiv [cs.CV], 2017. 

 


